CSCI 446 – ARTIFICIAL INTELLIGENCE FINAL EXAM STUDY OUTLINE

Introduction to Artificial Intelligence

- I. Definitions of Artificial Intelligence
 - A. Acting Like Humans -- Turing Test
 - B. Thinking Like Humans -- Cognitive Modeling
 - C. Thinking Rationally -- Logicist Approach
 - D. Acting Rationally -- Rational Agents
- II. Foundations of Artificial Intelligence
 - A. Philosophy
 - B. Mathematics
 - C. Psychology
 - D. Computer Engineering
 - E. Linguistics
- III. History of Artificial Intelligence
 - A. Gestation
 - B. Early Enthusiasm, Great Expectations
 - C. Dose of Reality
 - D. Knowledge Based Systems
 - E. Al Becomes and Industry
 - F. Return of Neural Networks
 - G. Recent Events

Intelligent Agents

- I. Agents and Environments
 - A. Vacuum Cleaner World Environment
- II. Rationality
- III. PEAS Performance Measure, Environment, Actuators, Sensors
- IV. Environment Types
 - A. Observable
 - B. Deterministic vs. Stochastic
 - C. Episodic vs. Sequential
 - D. Static vs. Dynamic
 - E. Discrete vs. Continuous
 - F. Single Agent vs. Multi-Agent
- V. Agent Types
 - A. Simple Reflex Agents
 - B. Reflex Agents with State
 - C. Goal-Based Agents
 - D. Utility Based Agents
 - E. Learning Agents

State Spaces, Uninformed Search

- I. Problem Formulation
 - A. Problem Types
 - 1. Deterministic, fully observable: Single-State Problem
 - 2. Non-observable: Conformant Problem
 - 3. Nondeterministic and/or partially observable: Contingency Problem
 - 4. Unknown state space: Exploration Problem
 - B. Single State Problem Formulation
 - 1. Initial State
 - 2. Successor Function
 - 3. Goal Test
 - 4. Path Cost
 - 5. Solution
- II. State Space
- III. Tree Search Algorithms
 - A. General Tree Search
 - 1. Completeness
 - 2. Time Complexity
 - 3. Space Complexity
 - 4. Optimality
 - B. Breadth First Search
 - C. Uniform Cost Search
 - D. Depth First Search
 - E. Depth Limited Search
 - F. Iterative Deepening Search
- IV. Graph Search

Heuristic Search

- I. Best-First Search
 - A. Heuristic Function h(n)
- II. A* Search
 - A. Actual Cost to Current Node g(n)
- III. Heuristics
 - A. Admissible Heuristic
 - B. Consistency or Monotonicity
 - C. Dominance
 - D. Relaxed Problems

Local Search

- I. Hill Climbing
 - A. Gradient Ascent or Descent
 - B. Local Maxima
 - C. Global Maximum
- II. Simulated Annealing
- III. Genetic Algorithms

Constraint Satisfaction Problems (CSPs)

- I. Examples
- II. Backtracking Search
 - A. Order of Variable Assignment
 - 1. Degree Heuristic
 - B. Order of Value Assignment
 - 1. Least Constraining Value Heuristic
 - C. Early Detection of Inevitable Failure
 - 1. Forward Checking
 - 2. Arc Consistency
 - D. Problem Structure
- III. Problem Structure and Decomposition
- IV. Local Search for CSPs

Games (Adversarial Search)

- I. Overview
- II. Minimax (Perfect Play)
- III. α – β Pruning
- IV. Nondeterministic Games
 - A. Chance Nodes

Logical Agents

- I. Knowledge Based Agents
 - A. Knowledge Base
 - B. Inference Engine
 - C. Separation of Knowledge and Process
- II. An Example
 - A. Wumpus World
- III. General Logic
 - A. Entailment
 - B. Models
 - C. Inference
- IV. Propositional Logic
 - A. Syntax
 - B. Truth Tables
- V. Equivalence, Validity, Satisfiability
- VI. Inference Rules / Theorem Proving
 - A. Forward Chaining
 - B. Backward Chaining
 - C. Resolution
 - 1. Conjunctive Normal Form (CNF)
 - 2. Conversion to CNF
 - 3. Resolution

First Order Logic

- I. Overview
- II. Syntax and Semantics
 - A. Basic Elements
 - B. Atomic Sentences
 - C. Complex Sentences
 - D. Models
 - E. Universal Quantification
 - F. Existential Quantification
- III. Fun with Sentences
 - A. Equality

Inference in First Order Logic

- I. Unification
 - A. Universal Instantiation
 - B. Existential Instantiation
 - C. Reduction to Propositional Inference
 - D. Unification
- II. Generalized Modus Ponens
- III. Forward and Backward Chaining
 - A. Forward Chaining
 - B. Backward Chaining
- IV. Logic Programming
- V. Resolution

Fuzzy Logic

- I. Membership Functions
- II. Linguistic Variables
- III. Fuzzy Set Operations
- IV. Fuzzy Inference
 - A. Fuzzification
 - B. Rule Inference
 - C. Rule Composition
 - D. Defuzzification

Planning

- I. Search vs. Planning
 - A. Actions, States, Goals, Plans
 - B. Situational Calculus
- II. STRIPS Operators
 - A. Initial and Final States
 - B. Operators
 - 1. Action
 - 2. Preconditions
 - 3. Effects (Postconditions)
- III. Partial-Order Planning

- IV. The Real World
 - A. When Things go Wrong
 - 1. Incomplete Information
 - 2. Incorrect Information
 - 3. Qualification Problem
- V. Conditional Planning
- VI. Monitoring and Replanning

Uncertainty

- I. Uncertainty
 - A. Sources of Uncertainty
 - B. Methods for Handling Uncertainty
- II. Probability
 - A. Terms
 - 1. Sample Space
 - 2. Event
 - 3. Random Variables
 - 4. Propositions
- III. Syntax and Semantics
 - A. Prior Probability
 - B. Joint Probability
 - C. Conditional Probability
- IV. Inference
 - A. Enumeration
 - 1. Normalization
- V. Independence
 - A. Absolute
 - B. Conditional
- VI. Bayes' Rule

Bayesian Networks

- I. Syntax
 - A. Nodes
 - B. Directed Arcs
 - C. Conditional Probabilities
 - D. D-Separation
- II. Semantics
 - A. Global and Local
 - B. Constructing a Bayes Net
- III. Inference
 - A. Enumeration
 - B. Variable Elimination
 - 1. Factors
- IV. Sampling
 - A. Prior Sampling
 - B. Rejection Sampling

- C. Likelihood Weighting
- D. Gibbs Sampling

Rational Decisions

- I. Rational Preferences
- II. Utility
 - A. Assessment of Human Utility
- III. Decision Networks
 - A. Decision Node
 - B. Chance Node
 - C. Utility Node
- IV. Value of Information

Machine Learning

- I. Learning Agents
 - A. Architecture
 - B. Learning Element
 - C. Supervised/Unsupervised Learning
- II. Inductive Learning
 - A. Approximate f(x) with h(x)
 - B. Overfitting
 - C. Generalization
 - D. Structural Representations
 - 1. Decision Trees
 - 2. Rules
 - E. Algorithms
 - 1. Decision Trees Information Theory / Entropy
 - 2. Rules Instance Covering
- III. Artificial Neural Networks
 - A. History
 - B. Model
 - 1. Parameters
 - a. Pattern of connections between layers
 - b. Learning rule
 - c. Activation function
 - C. Training
 - 1. Backpropagation
 - 2. Mean Squared Error (MSE)
 - 3. Error surface
 - D. Applications

Robotics - Omar Genetic Algorithms - Jesse Swarm Intelligence - Andrew Philosophical and Ethical Issues - Nathan Intelligent Agent Societies - Kenny